seq2seq(Sequence to Sequence)
지금까지 우리는 단어의 분산표현과 언어모델들을 공부하였다. 특히 전 장에서 LSTM의 구조를 배웠다. 이제 이 언어모델을 실제 활용 하여 AI에게 새로운 문장을 만들게 할 수 있게되었다. 그리고 언어모델의 구조를 응용하여 챗봇이나 번역시스템등 여러가지 활용이 가능하다는 것을 이번에 알게 되었다. 이번 장에서 포스팅 할 내용은 Encoder와 Decoder의 구조와 그 2개를 결합해 seq2seq 즉 시계열 데이터를 시계열 데이터로 변환하는 작업을 진행 해 볼 것이다. seq2seq의 전체모습 위 사진이 seq2seq의 전체적인 모습이다. 현재 모델의 목적은 번역이다. 구조안에 들어있는 요소들은 다 저번에 포스팅 했던 것들이라 충분히 알고있으리라 생각한다. 그렇다면 문제는 이러한 결합구조가 어떤 의미를 띄..
2021.08.04